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Outline of the talk

Motivation
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Motivation

• X-ray FELs demand ultra-low transverse emittance 

beam*

• State-of-the art photo-injectors can generate low 6-D 

emittance. Typically asymmetric emittances. 

Emittance exchange can swap transverse with the Emittance exchange can swap transverse with the 

longitudinal emittance. 

• Allows one to convert transverse modulations to 

longitudinal modulations : Beam shaping application

• Can also be used to suppress microbunching 

instability** 3
*P. Emma et al. , Nature Photonics 4, 641 - 647 (2010) ; **M. Cornacchia and P. Emma, PRSTAB 5, 084001 (2002)



Emittance exchange  beamline
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Fermilab A0 photoinjector: Emittance exchange
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~ 100
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Emittance measurement diagnostics and techniques

• Beam size: OTR and YAG screens

• Bunch length: Streak or Interferometer

• Energy spread: Spectrometer magnet and a screen

• Transverse emittance: Multi-slit method

• Longitudinal emittance: Product of minimum energy 

spread and bunch length (upper limit) 
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GUI to extract Courant- Snyder parameters
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The A0 photoinjector: Machine tuning
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1  RF – scan to locate minimum energy spread i.e. no chirp

2  Streak camera to measure bunch length  (Longitudinal emittance)

3  X-Slits and Y-slits to measure the transverse emittances (X3)

4  Tune quadrupoles to maximize CTR radiation thus minimizing the 

bunchlength. Tune quadrupoles to minimize energy spread at XS4. 

Finer scan along the minimum values.  

5  X-slits and Y-slits to measure outgoing transverse emittance  (X23) 
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First observation of emittance exchange
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An Observation of a Transverse to Longitudinal 

Emittance Exchange at the Fermilab A0 Photoinjector

by Timothy W. Koeth

Ph. D. Dissertation



The A0 beamline: Part II
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Coherent Synchrotron Radiation

• Synchrotron radiation  is the result of individual 

electrons that randomly emit photons when passing 

through a bending magnet.   

• Coherent synchrotron radiation (CSR) is produced • Coherent synchrotron radiation (CSR) is produced 

when a group of electrons collectively emit photons in 

phase. This occurs when bunch length is shorter than 

radiation wavelength.
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Condition for coherent radiation
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The A0 beamline
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CSR : Measurements

• Power 

• Polarization

• Angular Distribution

• Using CSR as a bunchlength monitor
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CSR Power Vs RF Phase (bunchlength)
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Polarizer angle vs CSR

16



CSR Angular distribution

Ratio (Horizontal to vertical) =  4.6 17



Bunch length measurement: Experimental Setup
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Martin – Puplett interferometer
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Bunch length measurement: Simulation Vs Experiment
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Studying the effects of CSR on the beam*
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* Using a Skew Quad in a Chicane to Temporally Resolve the Transverse Effects of CSR – P. Emma ( uBI 2010)



Twin pulse at the cathode
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Twin pulse Profile @X24 vs SkewQuad
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Twin pulse Profile @X24 vs SkewQuad
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Skew quad diagnostic to resolve CSR effects
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Skew quad measurements at X24
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Part III: Chirped beam has improved performance

Emittance-exchanger

Emittance-exchanger

Z

δ

• Improved performance

• Minimizes thick lens effect
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How to minimize thick lens effect?*
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* P. Emma, Z. Huang, K. - J. Kim, P. Piot, “Transverse-to-longitudinal emittance exchange to improve performance of 

high-gain free-electron lasers”, Phys. Rev. ST Accel. Beams 9, 100702 (2006),
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Minimize thick lens effect: Add energy chirp

Look for bunch length, transverse beam 

size, emittances (x and z)
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Chirped beam study: Streak camera
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Quadrupole current before EEX (A)



Finer quadrupole scan using interferometer pyros

• Pyro signal increases ~ by a factor of  2 31



Interferometer measurement

Bunch length reduction ~ 2 32



CSR Power (pyrometer) Vs RF Phase (bunchlength)
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Emittance exchange with chirped beam*

Energy      13.2 MeV

Charge      400 pC

Emit x         4 um

Emit z         20 um

-30                     -35    (RF  phase)    -40                                     -45 

34250 pC; PRL 106, 244801 (2011)        * IPAC 2012



Emittance exchange simulation with GPT

Energy      13.2 MeV

Charge      400 pC

Emit x         4 um

Emit z         20 um
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Next generation EEX: upgraded Classic EEX* 

• Use two (or one) more deflecting cavity to compensate thick lens effect 
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Next generation EEX : A Negative drift EEX
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Next generation EEX : A Chicane style EEX
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Next generation EEX : A Double EEX*

39
A. Zholents & Zolotorev



A brief history of EEX (just a sample)

• Chicane style EEX : Cornacchia and Emma (2002)

• Double dogleg EEX: Kim and Sessler (2005)

• A0 emittance exchange beamline commissioned

• Beam shaping results : Yin-e et. al (2010)

• Emittance exchange result: Jinhao et. al (2010)

• EEX for tailoring current distributions: Piot (2011)

• EEX for HHG: B. Jiang (2011)

• Double EEX proposal : Zholents & Zolotorev (2011)

• Use of EEX as a bunch compressor : Carlsten (2011)

• Chicane style EEX:  Xiang and Chao (2012)

• Terra incognita ……………………..
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Summary

• Coherent synchrotron radiation has been studied at the 

emittance exchange beamline. 

• Emittance exchange with an energy-chirped beam shows 

improved performance. Emittance dilution still exists.

• Next generation EEX has to take into account the thick 

lens cavity with modification to exchange lattice.

• A chicane-style emittance exchange looks promising and 

is planned to be tested at the Advanced Superconducting 

Test Accelerator (ASTA) facility @ 40 MeV
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